
International Journal of Latest Research in Humanities and Social Science (IJLRHSS) 

Volume 08 - Issue 08, 2025 

www.ijlrhss.com || PP. 60-70 

60 | Page                                                                                                                         www.ijlrhss.com 

 

Solving First-Order Differential Equations Analytically and 

Numerically 
 

*Alaa Saleh Hadi 
*Wasit Education Directorate / Al-Kut / High School for Outstanding Girls 

 

Abstract: First-order differential equations are fundamental tools in modeling physical, biological, and 

engineering systems. This paper explores both analytical and numerical approaches to solving first-order 

differential equations. Analytical methods such as separation of variables, integrating factors, and exact 

equations provide exact solutions under ideal conditions, while numerical techniques like Euler’s method and 

Runge-Kutta methods allow approximate solutions when exact forms are difficult or impossible to find. 

Examples are presented to illustrate the application of each method. 

 

Introduction 
Differential equations are essential in describing dynamic systems in various scientific fields. A first-

order differential equation involves the first derivative of a function and provides a relationship between a 

function and its rate of change. Solving these equations is crucial for understanding system behaviors over time. 

While analytical solutions offer closed-form expressions, numerical methods are often used when equations are 

too complex for exact solutions. 

 

Common Methods for Solving First-Order Differential Equations 

1. Separation of Variables 

This method is used when the equation can be expressed as a product of a function of 𝒙 and a 

function of: 
𝒅𝒚/𝒅𝒙 =  𝒈(𝒙)  ∗  𝒉(𝒚) 

Rewriting gives: 

(𝟏/𝒉(𝒚)) 𝒅𝒚 =  𝒈(𝒙) 𝒅𝒙 

Then integrate both sides to find the solution. 

 

Example 1 

Given: 𝒅𝒚/𝒅𝒙 =  𝒙 +  𝒚 

This equation is not directly separable. To solve it, we rearrange it using substitution. 

Let 𝒗 =  𝒚 ∗  𝒆(−𝒙), 𝒕𝒉𝒆𝒏 𝒚 =  𝒗 ∗  𝒆(𝒙) 

Then 𝒅𝒚/𝒅𝒙 =  𝒅𝒗/𝒅𝒙 ∗  𝒆(𝒙)  +  𝒗 ∗  𝒆(𝒙) 

Substitute into the original equation: 

𝒅𝒗/𝒅𝒙 ∗  𝒆(𝒙)  +  𝒗 ∗  𝒆(𝒙)  =  𝒙 +  𝒗 ∗  𝒆(𝒙) 

Cancel 𝒗 ∗  𝒆(𝒙) from both sides: 

𝒅𝒗/𝒅𝒙 ∗  𝒆(𝒙)  =  𝒙 

𝒅𝒗/𝒅𝒙 =  𝒙 ∗  𝒆(−𝒙) 
Integrate both sides: 

𝒗 =  ∫  𝒙 ∗  𝒆(−𝒙) 𝒅𝒙 (Use integration by parts) 

𝒗 =  −𝒙 ∗  𝒆(−𝒙)  −  𝒆(−𝒙)  +  𝑪 

Then 𝒚 =  𝒗 ∗  𝒆(𝒙)  =  (−𝒙 −  𝟏 +  𝑪 ∗  𝒆(𝒙)) 

Apply the initial condition 𝒚(𝟎)  =  𝟏 to find 𝑪. 

 

Example 2 

Given: 𝒅𝒚/𝒅𝒙 =  𝒚 −  𝒙² +  𝟏 

This equation is not directly separable, but can be solved as a linear first-order equation. 

Rewriting: 𝒅𝒚/𝒅𝒙 −  𝒚 =  −𝒙² +  𝟏 

This is a linear ODE. The integrating factor is 𝝁(𝒙)  =  𝒆(−𝒙) 

Multiply both sides: 

𝒆(−𝒙) 𝒅𝒚/𝒅𝒙 −  𝒚 ∗  𝒆(−𝒙)  =  (−𝒙² +  𝟏)  ∗  𝒆(−𝒙) 
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𝒅/𝒅𝒙 (𝒚 ∗  𝒆(−𝒙))  =  (−𝒙² +  𝟏)  ∗  𝒆(−𝒙) 
Integrate both sides to find y. 

 

Example 3 

Given: 𝒅𝒚/𝒅𝒙 =  𝒔𝒊𝒏(𝒙)  +  𝒚 

This is also a linear first-order equation. 

Rewriting: 𝒅𝒚/𝒅𝒙 −  𝒚 =  𝒔𝒊𝒏(𝒙) 
The integrating factor is 𝝁(𝒙)  =  𝒆(−𝒙) 

Multiply both sides: 

𝒆(−𝒙) 𝒅𝒚/𝒅𝒙 −  𝒚 ∗  𝒆(−𝒙)  =  𝒔𝒊𝒏(𝒙)  ∗  𝒆(−𝒙) 

𝒅/𝒅𝒙 (𝒚 ∗  𝒆(−𝒙))  =  𝒔𝒊𝒏(𝒙)  ∗  𝒆(−𝒙) 

Integrate both sides to solve for y. 

 

2. Homogeneous Equations 

An equation of the form 𝒅𝒚/𝒅𝒙 =  𝑭(𝒚/𝒙) is called homogeneous. 

Use the substitution: 

 𝒗 =  𝒚/𝒙  →   𝒚 =  𝒗𝒙  →   𝒅𝒚/𝒅𝒙 =  𝒗 +  𝒙 𝒅𝒗/𝒅𝒙 

Solving Differential Equations Using the Method of Homogeneous Equations 

 

Example 1: 

Given: 𝒅𝒚/𝒅𝒙 =  𝒙 +  𝒚, 𝒚(𝟎)  =  𝟏 

This equation is not homogeneous. To convert it into a homogeneous form, we perform the substitution: 

Let 𝒗 =  𝒚 / 𝒙 ⇒  𝒚 =  𝒙𝒗 

Then 𝒅𝒚/𝒅𝒙 =  𝒙 𝒅𝒗/𝒅𝒙 +  𝒗 
Substitute into the equation: 

𝒙 𝒅𝒗/𝒅𝒙 +  𝒗 =  𝒙 +  𝒙𝒗 
𝒙 𝒅𝒗/𝒅𝒙 +  𝒗 =  𝒙(𝟏 +  𝒗) 
𝒙 𝒅𝒗/𝒅𝒙 =  𝒙(𝟏 +  𝒗)  −  𝒗 =  𝒙 +  𝒙𝒗 −  𝒗 =  𝒙 +  𝒗(𝒙 −  𝟏) 
This is still not separable, so we conclude that this equation is better approached with other methods (e.g., 

numerical methods or integrating factor). 

 

Example 2: 

Given: 
𝒅𝒚

𝒅𝒙
=  𝒚 − 𝒙𝟐 +  𝟏 , 𝒚(𝟎)  =  𝟎. 𝟓,  

This equation is also not homogeneous. It is a first-order linear differential equation. 

Rewriting: 

𝒅𝒚/𝒅𝒙 −  𝒚 =  −𝒙² +  𝟏 
Use the integrating factor method: 
Integrating factor (𝑰. 𝑭. )  =  𝒆−𝒙 

Multiply both sides by I.F.: 

𝒆−𝒙 𝒅𝒚/𝒅𝒙 − 𝒆−𝒙𝒚 =   −𝒙𝟐 +  𝟏 𝒆−𝒙 
→  𝒅/𝒅𝒙 [𝒆−𝒙 𝒚]  =   −𝒙𝟐 +  𝟏 𝒆−𝒙 
Integrate both sides to find y. 
 

Example 3: 

Given: 
𝒅𝒚

𝒅𝒙
 =  𝒔𝒊𝒏(𝒙) +  𝒚, 𝒚(𝟎)  =  𝟏 

Again, not a homogeneous equation. It is a linear differential equation. 

Rewrite: 
𝒅𝒚

𝒅𝒙
 −  𝒚 =  𝒔𝒊𝒏(𝒙) 

Integrating factor =  𝒆−𝒙 
Multiply both sides: 

𝒆−𝒙
𝒅𝒚

𝒅𝒙
 − 𝒆−𝒙𝒚 =  𝒆−𝒙 𝒔𝒊𝒏(𝒙) 

→
𝒅

𝒅𝒙
 𝒆−𝒙𝒚  =  𝒆−𝒙 𝒔𝒊𝒏(𝒙) 

Integrate both sides to find 𝒚. 
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Example 4: 

Solve the differential equation: 
𝒅𝒚

𝒅𝒙
=

𝒙 +  𝒚

𝒙 −  𝒚
 

Solution: This is a homogeneous differential equation because the right-hand side is a function of (
𝒚

𝒙
). 

Let 𝒗 =
𝒚

𝒙
, 𝒉𝒆𝒏𝒄𝒆 𝒚 =  𝒗𝒙. 

Differentiate both sides with respect to 𝒙:
𝒅𝒚

𝒅𝒙
 =  𝒗 +  𝒙

𝒅𝒗

𝒅𝒙
 

Substitute into the original equation: 

 𝒗 +  𝒙
𝒅𝒗

𝒅𝒙
=

𝟏 +  𝒗

𝟏 −  𝒗
 

Rewriting: 𝒙
𝒅𝒗

𝒅𝒙
=

𝟏 + 𝒗

𝟏 − 𝒗
 −  𝒗 

Combine the terms: 

𝒙
𝒅𝒗

𝒅𝒙
=

𝟏 +  𝒗 −  𝒗 𝟏 −  𝒗 

𝟏 −  𝒗
=

𝟏 + 𝒗𝟐

𝟏 −  𝒗
 

Separate variables: 
𝟏 − 𝒗

𝟏 + 𝒗𝟐
𝒅𝒗 =

𝟏

𝒙
 𝒅𝒙 

Integrate both sides: 

Left side: 

∫
𝟏 −  𝒗

𝟏 +  𝒗𝟐
𝒅𝒗 = ∫

𝟏

𝟏 +  𝒗𝟐
 𝒅𝒗 − ∫

𝒗

𝟏 + 𝒗𝟐
 𝒅𝒗 =  𝒂𝒓𝒄𝒕𝒂𝒏(𝒗) − 𝟎. 𝟓 𝒍𝒏(𝟏 +  𝒗𝟐) 

Right side: ∫
𝟏

𝒙
  𝒅𝒙  =  𝒍𝒏|𝒙| 

Combine the results: 𝒂𝒓𝒄𝒕𝒂𝒏(𝒗) −  𝟎. 𝟓 𝒍𝒏 𝟏 +  𝒗𝟐  =  𝒍𝒏|𝒙|  +  𝑪 

Replace 𝒗 =
𝒚

𝒙
: 𝒂𝒓𝒄𝒕𝒂𝒏  

𝒚

𝒙
 −  𝟎. 𝟓 𝒍𝒏  𝟏 +  

𝒚

𝒙
 
𝟐

 =  𝒍𝒏|𝒙|  +  𝑪 

 

Example 5: 

Solve the differential equation: 
𝒅𝒚

𝒅𝒙
 =   

𝒚

𝒙
  +   

𝒚

𝒙
 
𝟐

 

Solution: This is also a homogeneous differential equation. 

Let 𝒗 =
𝒚

𝒙
 , 𝒕𝒉𝒆𝒏 𝒚 =  𝒗𝒙, 𝒂𝒏𝒅

𝒅𝒚

𝒅𝒙
 =  𝒗 +  𝒙

𝒅𝒗

𝒅𝒙
 

Substitute: 𝒗 +  𝒙
𝒅𝒗

𝒅𝒙
 =  𝒗 + 𝒗𝟐 

Subtract v from both sides: 𝒙
𝒅𝒗

𝒅𝒙
 =  𝒗𝟐 

Separate variables: 
𝟏

𝒗𝟐
𝒅𝒗 =

𝟏

𝒙
 𝒅𝒙 

Integrate both sides: ∫ 𝒗−𝟐 𝒅𝒗 =  ∫ 𝒙−𝟏 𝒅𝒙 →  −𝒗−𝟏  =  𝒍𝒏|𝒙|  +  𝑪 

Substitute back 𝒗 =
𝒚

𝒙
: −

𝒙

𝒚
 =  𝒍𝒏|𝒙|  +  𝑪 

Or equivalently: 
𝒙

𝒚
 =  −𝒍𝒏|𝒙|  −  𝑪 

 

3. Solving Differential Equations Using the Integrating Factor Method 

Example 1: 

Given: 𝒅𝒚/𝒅𝒙 =  𝒙 +  𝒚, 𝒚(𝟎)  =  𝟏 

Step 1: Rewrite the equation in standard linear form: 

𝒅𝒚/𝒅𝒙 −  𝒚 =  𝒙 
Step 2: Find the integrating factor (𝑰. 𝑭. ): 

𝑰. 𝑭. =  𝒆−∫𝟏𝒅𝒙   =  𝒆−𝒙 
Step 3: Multiply both sides by the 𝑰. 𝑭.: 

𝒆−𝒙
𝒅𝒚

𝒅𝒙
 − 𝒆−𝒙 𝒚 =  𝒙 𝒆−𝒙 

→
𝒅

𝒅𝒙
 𝒆−𝒙 𝒚  =  𝒙 𝒆−𝒙 

Step 4: Integrate both sides: 

∫
𝒅

𝒅𝒙
 𝒆−𝒙 𝒚 𝒅𝒙 =  ∫  𝒙 𝒆−𝒙 𝒅𝒙 
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Use integration by parts: 

∫  𝒙 𝒆−𝒙 𝒅𝒙 =  −𝒙 𝒆−𝒙  −  𝒆−𝒙  +  𝑪 
 
So, 𝒆−𝒙 𝒚 =  −𝒙 𝒆−𝒙  −  𝒆−𝒙  +  𝑪 
Step 5: Solve for 𝒚  : 
𝒚 =  −𝒙 −  𝟏 +  𝑪 𝒆𝒙 
Step 6: Apply initial condition 𝒚(𝟎)  =  𝟏: 

𝟏 =  −𝟎 −  𝟏 +  𝑪 →  𝑪 =  𝟐 
 
Final solution: 𝒚 =  −𝒙 −  𝟏 +  𝟐𝒆𝒙 

 

Example 2: 

Given: 
𝒅𝒚

𝒅𝒙
=  𝒚 − 𝒙𝟐 +  𝟏, 𝒚(𝟎)  =  𝟎. 𝟓 

Step 1: Rewrite the equation in standard linear form: 
𝒅𝒚

𝒅𝒙
 −  𝒚 =  −𝒙² +  𝟏 

Step 2: Find the integrating factor (𝑰. 𝑭. ): 
𝑰. 𝑭. =  𝒆−𝒙 
Step 3: Multiply both sides by the 𝑰. 𝑭. : 

𝒆−𝒙
𝒅𝒚

𝒅𝒙
  − 𝒆−𝒙 𝒚 =   −𝒙𝟐 +  𝟏 𝒆−𝒙 

→
𝒅

𝒅𝒙
 𝒆−𝒙 𝒚  =   −𝒙𝟐 +  𝟏 𝒆−𝒙 

Step 4: Integrate both sides: 

∫𝟏𝒅

𝒅𝒙
 𝒆−𝒙𝒚 𝒅𝒙 =   𝟏  −𝒙𝟐 +  𝟏 𝒆−𝒙 𝒅𝒙 

Split the integral: 

 𝟏  −𝒙𝟐 +  𝟏 𝒆−𝒙 𝒅𝒙 =  − 𝟏𝒙𝟐𝒆−𝒙 𝒅𝒙 +   𝟏𝒆−𝒙 𝒅𝒙 

Use integration by parts (twice) or a symbolic tool: 

 𝟏𝒙𝟐𝒆−𝒙  𝒅𝒙 =  (𝒙² +  𝟐𝒙 +  𝟐) 𝒆^(−𝒙) 

So the full integral =   − 𝒙𝟐 +  𝟐𝒙 +  𝟐 +  𝟏 𝒆−𝒙  +  𝑪 
Then, 𝒆−𝒙 𝒚 =   − 𝒙𝟐 +  𝟐𝒙 +  𝟐 +  𝟏 𝒆−𝒙  +  𝑪 
→  𝒚 =  −𝒙² −  𝟐𝒙 −  𝟏 +  𝑪 𝒆𝒙 
 
Step 5: Apply initial condition 𝒚(𝟎)  =  𝟎. 𝟓: 
𝟎. 𝟓 =  −𝟎 −  𝟎 −  𝟏 +  𝑪 →  𝑪 =  𝟏. 𝟓 
Final solution: 𝒚 =  −𝒙² −  𝟐𝒙 −  𝟏 +  𝟏. 𝟓𝒆𝒙 
 
Example 3: 

Given: 𝒅𝒚/𝒅𝒙 =  𝒔𝒊𝒏(𝒙)  +  𝒚, 𝒚(𝟎)  =  𝟏 
 
Step 1: Rewrite the equation in standard linear form: 

𝒅𝒚/𝒅𝒙 −  𝒚 =  𝒔𝒊𝒏(𝒙) 
 
Step 2: Find the integrating factor (𝑰. 𝑭. ): 
𝑰. 𝑭. =  𝒆−𝒙 
 
Step 3: Multiply both sides by the 𝑰. 𝑭. : 
𝒆−𝒙 𝒅𝒚/𝒅𝒙 − 𝒆−𝒙 𝒚 =  𝒔𝒊𝒏 𝒙 𝒆−𝒙 
→  𝒅/𝒅𝒙 [𝒆−𝒙 𝒚]  =  𝒔𝒊𝒏 𝒙 𝒆−𝒙 
 
Step 4: Integrate both sides: 
∫ 𝟏𝒅

𝒅𝒙
 𝒆−𝒙 𝒚 𝒅𝒙 =   𝒔𝒊𝒏 𝒙 𝒆−𝒙 𝒅𝒙 
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Use integration by parts or known result: 

 𝒔𝒊𝒏 𝒙 𝒆−𝒙 𝒅𝒙 =  −𝟎. 𝟓 𝒆−𝒙 (𝒔𝒊𝒏(𝒙)  +  𝒄𝒐𝒔(𝒙))  +  𝑪 

So, 𝒆−𝒙 𝒚 =  −𝟎. 𝟓 𝒆−𝒙 (𝒔𝒊𝒏(𝒙)  +  𝒄𝒐𝒔(𝒙))  +  𝑪 
→  𝒚 =  −𝟎. 𝟓 (𝒔𝒊𝒏(𝒙) +  𝒄𝒐𝒔(𝒙))  +  𝑪 𝒆𝒙 
 

Step 5: Apply initial condition y(0) = 1: 
𝟏 =  −𝟎. 𝟓 (𝟎 +  𝟏)  +  𝑪 →  𝑪 =  𝟏. 𝟓 
Final solution: 𝒚 =  −𝟎. 𝟓 (𝒔𝒊𝒏(𝒙)  +  𝒄𝒐𝒔(𝒙))  +  𝟏. 𝟓 𝒆𝒙 

There are other methods for solving first-order differential equations, including: 

 

4. Linear Equations 

Form: 
𝒅𝒚

𝒅𝒙
+  𝑷(𝒙)𝒚 =  𝑸(𝒙) 

Solution: Use the integrating factor 𝝁(𝒙)  =  𝒆∫ 𝑷 𝒙 𝒅𝒙 

Multiply through and solve: 

𝝁 𝒙 
𝒅𝒚

𝒅𝒙
   +  𝝁 𝒙 𝑷 𝒙 𝒚 =  𝝁 𝒙 𝑸 𝒙 →

𝒅

𝒅𝒙 𝝁 𝒙 𝒚  
 =  𝝁(𝒙)𝑸(𝒙) 

 

5. Exact Equations 

Form: 𝑴(𝒙, 𝒚)𝒅𝒙 +  𝑵(𝒙, 𝒚)𝒅𝒚 =  𝟎 

Condition: 
𝝏𝑴

𝝏𝒚
 =

𝝏𝑵

𝝏𝒙
 

Solution: Find a function 𝝍(𝒙, 𝒚) such that: 
𝝏𝝍

𝝏𝒙
 =  𝑴,

𝝏𝝍

𝝏𝒚
 =  𝑵 

Then 𝝍(𝒙, 𝒚)  =  𝑪 

 

6. Bernoulli Equation 

Form: 
𝒅𝒚

𝒅𝒙
 +  𝑷(𝒙)𝒚 =  𝑸 𝒙 𝒚𝒏 

Solution: Make substitution 𝒗 =  𝒚𝟏−𝒏, then reduce to a linear equation 

 
Numerical Methods for Solving First-Order Differential Equations 

First-order differential equations are fundamental in modeling various natural phenomena. Often, these 

equations cannot be solved analytically, and numerical methods provide approximate solutions. In this 

document, we will explore three numerical methods: Euler’s Method, Improved Euler’s Method (Heun’s 

Method), and the Runge-Kutta Method (RK4). Each method will be applied to the same three example problems 

to allow for comparison. 

 

First-order differential equations involve derivatives of the first order only. The general form is: 

𝒅𝒚/𝒅𝒙 =  𝒇(𝒙, 𝒚),  

with an initial condition  

𝒚(𝒙₀)  =  𝒚₀. 
Example Problems Used in All Methods: 

Example 1: 
𝐝𝐲

𝐝𝐱
=  𝐱 +  𝐲  , 𝐲 𝟎 =  𝟏 , 𝐡 =  𝟎. 𝟏 

Example 2:     
𝐝𝐲

𝐝𝐱
=  𝐲 −  𝐱𝟐 +  𝟏 , 𝐲 𝟎 =  𝟎. 𝟓 , 𝐡 =  𝟎. 𝟐 

Example 3:     
𝐝𝐲

𝐝𝐱
=  𝐬𝐢𝐧 𝐱 +  𝐲 , 𝐲 𝟎 =  𝟏 , 𝐡 =  𝟎. 𝟏 

 

Some analytical methods for solving equations: 
1. Euler's Method 

Euler's method is the simplest numerical method. It uses the slope at the current point to 

estimate the next point. 
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Formula: 
𝒚ₙ₊₁ =  𝒚ₙ +  𝒉 ∗  𝒇(𝒙ₙ, 𝒚ₙ) 
Where h is the step size. 

Pros: Simple and easy to implement. 

Cons: Not very accurate unless the step size is very small. 

 

Example 1:   
𝒅𝒚

𝒅𝒙
 =  𝒙 +  𝒚 

We will solve this using Euler's Method. 

Euler's formula is: 
𝒚𝒏+𝟏  =  𝒚𝒏  +  𝒉 ∗  𝒇(𝒙𝒏 , 𝒚𝒏) 
Where 𝒇(𝒙, 𝒚)  =  𝒙 +  𝒚. 
Let the initial conditions be: 

𝒙₀ =  𝟎  ,   𝒚₀ =  𝟏 
Step size 𝒉 =  𝟎. 𝟏 
We will compute y for 5 steps. 

Step-by-step Calculations : 

Step (n) 𝒙𝒏 𝒚𝒏 𝒇(𝒙𝒏 , 𝒚𝒏)  =  𝒙𝒏  +  𝒚𝒏 
0 0.00 1.0000 1.0000 

1 0.10 1.1000 1.2000 

2 0.20 1.2200 1.4200 

3 0.30 1.3620 1.6620 

4 0.40 1.5282 1.9282 

After 5 steps, the approximate value of 𝒚  𝑎𝑡  𝒙 =  𝟎. 𝟓is𝟏. 𝟕𝟐𝟏𝟎. 

 
Example 2:   

𝒅𝒚

𝒅𝒙
=  𝒚 −  𝒙𝟐 +  𝟏 

𝒅𝒚/𝒅𝒙 =  𝒚 −  𝒙² +  𝟏 
Initial condition   𝒙₀ =  𝟎  ,   𝒚𝟎 =  𝟎. 𝟓 
Step size: h = 0.2 
Using Euler's method:  

𝒚𝒏+𝟏  =  𝒚𝒏  +  𝒉 ∗  𝒇(𝒙𝒏 , 𝒚𝒏) 
Where  
𝒇 𝒙, 𝒚 =  𝒚 − 𝒙𝟐 +  𝟏 

Step (n) 𝒙𝒏 𝒚𝒏 𝒇(𝒙𝒏 , 𝒚𝒏)  
0 0.00 0.5000 1.5000 

1 0.20 0.8000 1.7600 

2 0.40 1.1520 1.9920 

3 0.60 1.5504 2.1904 

4 0.80 1.9885 2.3485 

Approximate value after 5 steps: 𝒚(𝟏. 𝟎)  ≈  𝟐. 𝟒𝟓𝟖𝟐 



International Journal of Latest Research in Humanities and Social Science (IJLRHSS) 

Volume 08 - Issue 08, 2025 

www.ijlrhss.com || PP. 60-70 

66 | Page                                                                                                                         www.ijlrhss.com 

 
Example 3: 𝒅𝒚/𝒅𝒙 =  𝒔𝒊𝒏(𝒙)  +  𝒚 
Initial condition   𝒙₀ =  𝟎  ,   𝒚₀ =  𝟏 
Step size: h = 0.1 , Using Euler's method: 
𝒚𝒏+𝟏  =  𝒚𝒏  +  𝒉 ∗  𝒇(𝒙𝒏 , 𝒚𝒏) 
Where 𝒇(𝒙, 𝒚)  =  𝒔𝒊𝒏(𝒙)  +  𝒚 

 
Step (n) 𝒙𝒏 𝒚𝒏 𝒇(𝒙𝒏 , 𝒚𝒏)  
0 0.00 1.0000 1.0000 

1 0.10 1.1000 1.1998 

2 0.20 1.2200 1.4187 

3 0.30 1.3618 1.6574 

4 0.40 1.5276 1.9170 

Approximate value after 5 steps: 𝒚(𝟎. 𝟓)  ≈  𝟏. 𝟕𝟏𝟗𝟑 

 
2. Improved Euler's Method (Heun's Method) 

Heun's method improves upon Euler’s method by averaging slopes. 

Formula: 

Predictor: 𝒚 ∗ =  𝒚ₙ +  𝒉 ∗  𝒇(𝒙ₙ, 𝒚ₙ) 
Corrector: 𝒚ₙ₊₁ =  𝒚ₙ + (𝒉/𝟐)  ∗  [𝒇(𝒙ₙ, 𝒚ₙ)  +  𝒇(𝒙ₙ₊₁, 𝒚 ∗)] 
This approach reduces the error significantly compared to Euler's method. 

 

Example 1 

Differential Equation: 𝒅𝒚/𝒅𝒙 =  𝒙 +  𝒚 

Initial Condition: 𝒚(𝟎)  =  𝟏 

Step size: 𝒉 =  𝟎. 𝟏 
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𝒙𝒏 𝒙𝒏 Predictor y* 𝒇(𝒙𝒏 , 𝒚𝒏)  𝒇(𝒙𝒏+𝟏 , 𝒚 ∗) 
0.00 1.00000 1.10000 1.00000 1.20000 

0.10 1.11000 1.23100 1.21000 1.43100 

0.20 1.24205 1.38626 1.44205 1.68626 

0.30 1.39847 1.56831 1.69847 1.96831 

0.40 1.58180 1.77998 1.98180 2.27998 

 
Example 2 

Differential Equation: 𝒅𝒚/𝒅𝒙 =  𝒚 −  𝒙𝟐  +  𝟏 

Initial Condition: 𝒚(𝟎)  =  𝟎. 𝟓 

Step size: 𝒉 =  𝟎. 𝟐 

𝒙𝒏 𝒚𝒏 Predictor y* 𝒇(𝒙𝒏 , 𝒚𝒏) 𝒇(𝒙𝒏+𝟏 , 𝒚 ∗) 
0.00 0.50000 0.80000 1.50000 1.76000 

0.20 0.82600 1.18320 1.78600 2.02320 

0.40 1.20692 1.61630 2.04692 2.25630 

0.60 1.63724 2.09269 2.27724 2.45269 

0.80 2.11024 2.60428 2.47024 2.60428 

 
Example 3 

Differential Equation: 𝒅𝒚/𝒅𝒙 =  𝒔𝒊𝒏(𝒙)  +  𝒚 

Initial Condition: 𝒚(𝟎)  =  𝟏 

Step size: h = 0.1 
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𝒙𝒏 𝒚𝒏 Predictor y* 𝒇(𝒙𝒏 , 𝒚𝒏) 𝒇(𝒙𝒏+𝟏 , 𝒚 ∗) 
0.00 1.00000 1.10000 1.00000 1.19983 

0.10 1.10999 1.23097 1.20983 1.42964 

0.20 1.24197 1.38603 1.44063 1.68155 

0.30 1.39807 1.56743 1.69359 1.95685 

0.40 1.58060 1.77760 1.97001 2.25702 

 
3. Runge-Kutta Methods 

The Runge-Kutta methods are a family of higher-order methods. The most commonly used is the 4th-order 

method (𝑹𝑲𝟒). 
Formula: 

𝒌₁ =  𝒉 ∗  𝒇(𝒙ₙ, 𝒚ₙ) 
𝒌₂ =  𝒉 ∗  𝒇(𝒙ₙ +  𝒉/𝟐, 𝒚ₙ +  𝒌₁/𝟐) 
𝒌₃ =  𝒉 ∗  𝒇(𝒙ₙ +  𝒉/𝟐, 𝒚ₙ +  𝒌₂/𝟐) 
𝒌₄ =  𝒉 ∗  𝒇(𝒙ₙ +  𝒉, 𝒚ₙ +  𝒌₃) 
𝒚ₙ₊₁ =  𝒚ₙ + (𝟏/𝟔) ∗ (𝒌₁ +  𝟐𝒌₂ +  𝟐𝒌₃ +  𝒌₄) 
𝑹𝑲𝟒 is accurate and widely used in engineering and scientific computing. 

 
Example 1 

Differential Equation: 𝒅𝒚/𝒅𝒙 =  𝒙 +  𝒚 

Initial Condition: 𝒚(𝟎)  =  𝟏  , 

Step size: 𝒉 =  𝟎. 𝟏 

Step x y k1 k2 y_new 

1 0 1 1 1.2 1.11 

2 0.1 1.11 1.21 1.431 1.2421 

3 0.2 1.2421 1.4421 1.6863 1.3985 

4 0.3 1.3985 1.6985 1.9683 1.5818 

5 0.4 1.5818 1.9818 2.28 1.7949 
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Example 2 

Differential Equation: 𝒅𝒚/𝒅𝒙 =  𝒚 −  𝒙𝟐  +  𝟏 

Initial Condition: 𝒚(𝟎)  =  𝟎. 𝟓 

Step size: 𝒉 =  𝟎. 𝟐 

 

Step x y k1 k2 y_new 

1 0 0.5 1.5 1.76 0.826 

2 0.2 0.826 1.786 2.0232 1.2069 

3 0.4 1.2069 2.0469 2.2563 1.6372 

4 0.6 1.6372 2.2772 2.4527 2.1102 

5 0.8 2.1102 2.4702 2.6043 2.6177 

 
Example 3 

Differential Equation: 𝒅𝒚/𝒅𝒙 =  𝒔𝒊𝒏(𝒙)  +  𝒚 

Initial Condition: 𝒚(𝟎)  =  𝟏 

Step size: h = 0.1 

 

Step x y k1 k2 y_new 

1 0 1 1.0 1.1998 1.11 

2 0.1 1.11 1.2098 1.4296 1.242 

3 0.2 1.242 1.4406 1.6815 1.3981 

4 0.3 1.3981 1.6936 1.9569 1.5806 

5 0.4 1.5806 1.97 2.257 1.7919 
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Analysis of Results 

we analyze the results of three different numerical methods used to solve first-order ordinary differential 

equations (ODEs): Euler's Method, Improved Euler's Method (Heun's Method), and the Improved Runge-Kutta 

Method (2nd Order). Each method was applied to three example problems with initial conditions and specific 

step sizes. We compare the accuracy and reliability of the results obtained. 

Euler's Method is a first-order numerical procedure for solving ODEs. It is simple but less accurate, 

especially with larger step sizes. 

This method improves upon Euler's Method by averaging slopes. It is a second-order method and provides 

better accuracy. 

The Improved Runge-Kutta method (2nd order) provides even better accuracy by using a weighted average 

of slopes. 

The results from the three methods for each example were tabulated. Euler’s method generally gave the 

least accurate results. Improved Euler's method showed a significant improvement, while the Improved Runge-

Kutta method provided the most accurate estimates, with smaller error margins due to the use of intermediate 

slopes. 

 

Conclusion 

In conclusion, the Improved Runge-Kutta method proved to be the most reliable and accurate 

among the three. For practical applications where precision is important, this method is 

recommended. Euler’s method can be used for quick, rough estimates, but it is not suitable for 

problems where high accuracy is needed. 
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